A Quantum-Inspired Ensemble Method and Quantum-Inspired Forest Regressors

نویسندگان

  • Zeke Xie
  • Issei Sato
چکیده

We propose a Quantum-Inspired Subspace(QIS) Ensemble Method for generating feature ensembles based on feature selections. We assign each principal component a Fraction Transition Probability as its probability weight based on Principal Component Analysis and quantum interpretations. In order to generate the feature subset for each base regressor, we select a feature subset from principal components based on Fraction Transition Probabilities. The idea originating from quantum mechanics can encourage ensemble diversity and the accuracy simultaneously. We incorporate Quantum-Inspired Subspace Method into Random Forest and propose Quantum-Inspired Forest. We theoretically prove that the quantum interpretation corresponds to the first order approximation of ensemble regression. We also evaluate the empirical performance of Quantum-Inspired Forest and Random Forest in multiple hyperparameter settings. Quantum-Inspired Forest proves the significant robustness of the default hyperparameters on most data sets. The contribution of this work is two-fold, a novel ensemble regression algorithm inspired by quantum mechanics and the theoretical connection between quantum interpretations and machine learning algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

I – Scientific Activity during Your Fellowship

Image thresholding is well accepted and one of the most imperative practices to accomplish image segmentation. This has been widely studied over the past few decades. However, as the multi-level thresholding computationally takes more time when level increases, hence, in this article, quantum mechanism is used to propose six different quantum inspired meta-heuristic methods for performing multi...

متن کامل

Quantum Inspired Genetic Algorithms

|A novel evolutionary computing method | quantum inspired genetic algorithms | is introduced, where concepts and principles of quantum mechanics are used to inform and inspire more eecient evolutionary computing methods. The basic terminology of quantum mechanics is introduced before a comparison is made between a classical genetic algorithm and a quantum inspired method for the travelling sale...

متن کامل

Multi-level thresholding using quantum inspired meta-heuristics

Image thresholding is well accepted and one of the most imperative practices to accomplish image segmentation. This has been widely studied over the past few decades. However, as the multi-level thresholding computationally takes more time when level increases, hence, in this article, quantum mechanism is used to propose six different quantum inspired meta-heuristic methods for performing multi...

متن کامل

Quantum Inspired Swarm Optimization for Multi-Level Image Segmentation Using BDSONN Architecture

This chapter is intended to propose a quantum inspired self-supervised image segmentation method by quantum-inspired particle swarm optimization algorithm and quantum-inspired ant colony optimization algorithm, based on optimized MUSIG (OptiMUSIG) activation function with a bidirectional self-organizing neural network architecture to segment multi-level grayscale images. The proposed quantum-in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017